Performance analysis and optimum criteria of an irreversible Braysson heat engine
نویسندگان
چکیده
An irreversible cycle model of a Braysson heat engine operating between two heat reservoirs is used to investigate the performance of the cycle affected by the finite-rate heat transfer between the working fluid and the heat reservoirs, heat leak loss between the heat reservoirs and irreversibility inside the cycle. The specific power output is maximized with respect to the cycle temperatures along with the isobaric temperature ratio. The specific power output is found to be a decreasing function of the internal irreversibility parameter and isobaric temperature ratio while there exist the optimal values of the state point temperatures at which the specific power output attains its maximum value for a typical set of operating parameters. Moreover, the maximum specific power output and other cycle parameters are calculated for different sets of operating conditions. The optimally operating regions of the important parameters in the cycle are determined. The results obtained here may provide some useful criteria for the optimal design and performance improvement of a realistic Braysson heat engine.
منابع مشابه
Optimum Criteria on the Performance of an Irreversible Braysson Heat Engine Based on the new Thermoeconomic Approach
An irreversible cycle model of a Braysson heat engine operating between two heat reservoirs is used to investigate the thermoeconomic performance of the cycle affected by the finite-rate heat transfer between the working fluid and the heat reservoirs, heat leak loss from the heat source to the ambient and the irreversibility within the cycle. The thermoeconomic objective function, defined as th...
متن کاملThermodynamic Assessment and Optimization of Performance of Irreversible Atkinson Cycle
Although various investigations of Atkinson cycle have been carried out, distinct output power and thermal efficiencies of the engine have been achieved. In this regard, thermal efficiency, Ecological Coefficient of Performance (ECOP), and Ecological function (ECF) are optimized with the help of NSGA-II method and thermodynamic study. The Pareto optimal frontier ...
متن کاملPerformance evaluation of a low heat rejection diesel engine with carbureted ethanol and jatropha oil
Experiments were conducted to evaluate the performance of a low heat rejection (LHR) diesel engine. Performance parameters and emission levels were determined at various magnitudes of brake mean effective pressure. Combustion characteristics of the engine were measured with TDC (top dead centre) encoder, pressure transducer, console and special pressure-crank angle software package at peak load...
متن کاملFinite-Time Thermoeconomic Optimization of a Solar-Driven Heat Engine Model
In the present paper, the thermoeconomic optimization of an irreversible solar-driven heat engine model has been carried out by using finite-time/finite-size thermodynamic theory. In our study we take into account losses due to heat transfer across finite time temperature differences, heat leakage between thermal reservoirs and internal irreversibilities in terms of a parameter which comes from...
متن کاملDerivation of Specific Heat Rejection Correlation in an SI Engine; Experimental and Numerical Study
The thermal balance analysis is a useful method to determine energy distribution and efficiency of internal combustion (IC) engines. In engines cooling concepts, estimation of heat transfer to brake power ratio, as one of the most significant performance characteristics, is highly demanded. In this paper, investigation of energy balance and derivation of specific heat rejection is carried out e...
متن کامل